Solving problems by searching
Chapter 3

Outline

• Problem-solving agents
• Problem types
• Problem formulation
• Example problems
• Basic search algorithms

Example: Romania

• On holiday in Romania; currently in Arad.
• Flight leaves tomorrow from Bucharest
• Formulate goal:
 - be in Bucharest
• Formulate problem:
 - states: various cities
 - actions: drive between cities
• Find solution:
 - sequence of cities, e.g. Arad, Sibiu, Fagaras, Bucharest
Problem-solving agent

Restricted form of general agent; solution executed "eyes closed":

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) return an action

static: seq, an action sequence
state, some description of the current world state
goal, a goal
problem, a problem formulation

state ← UPDATE-STATE(state, percept)

if seq is empty then
 goal ← FORMULATE-GOAL(state)
 problem ← FORMULATE-PROBLEM(state, goal)
 seq ← SEARCH(problem)

action ← FIRST(seq)
seq ← REST(seq)
return action

Problem types

• Deterministic, fully observable → single-state problem
 - Agent knows exactly which state it will be in; solution is a sequence

• Non-observable → sensor-less problem (conformant problem)
 - Agent may have no idea where it is; solution is a sequence

• Partially observable → contingency problem
 - Perception provides new information about current state
 - Often interleave search, execution

• Unknown state space → exploration problem
 - When states and actions of the environment are unknown

Example: vacuum world

• Single-state, start in #5.
 Solution? [Right, Suck]

• Sensorless, start in {1, 2, 3, 4, 5, 6, 7, 8} e.g.,
 Right goes to {2, 4, 6, 8}
 Solution?
Example: vacuum world

- **Sensorless**, start in \(\{1, 2, 3, 4, 5, 6, 7, 8\}\) e.g.,
 - Right goes to \(\{2, 4, 6, 8\}\)
 - Solution? \([\text{Right, Suck, Left, Suck}]\)

- **Contingency**
 - Nondeterministic: Suck may dirty a clean carpet
 - Partially observable: location, dirt at current location
 - Percept: \([L, \text{Clean}]\), i.e., start in #5 or #7
 - Solution?

Solution? \([\text{Right, Suck, Left, Suck}]\)

Solution? \([\text{Right, If dirt then Suck}]\)

Single-state problem formulation

A problem is defined by four items:

1. **initial state**, e.g. "at Arad"
2. **actions** or successor function \(S(x) = \text{set of action–state pairs}\)
 - e.g., \(S(\text{Arad}) = \{\langle\text{Arad }\rightarrow \text{Zerind, Zerind}\rangle, \ldots\}\)
3. **goal test**, can be
 - **explicit**, e.g., \(x = \text{"at Bucharest"}\)
 - **implicit**, e.g., \(\text{Checkmate}(x)\)
4. **path cost** (additive)
 - e.g., sum of distances, number of actions executed, etc.
 - \(c(x, a, y)\) is the step cost, assumed to be \(\geq 0\)

- **A solution** is a sequence of actions leading from the initial state to a goal state

Selecting a state space

- **Real world is absurdly complex**
 - State space must be abstracted for problem solving
- **(Abstract) state** corresponds to set of real states
- **(Abstract) action** corr. to complex combination of real actions
 - E.g., "Arad → Zerind" represents a complex set of possible routes, detours, rest stops, etc.
- For guaranteed realizability, any real state "in Arad" must get to some real state "in Zerind"
- **(Abstract) solution** corresponds to
 - Set of real paths that are solutions in the real world
- Each abstract action should be "easier" than the original problem
Vacuum world state space graph

- States?
- Actions?
- Goal test?
- Path cost?

Example: The 8-puzzle

- States?
- Actions?
- Goal test?
- Path cost?

Example: The 8-puzzle

- States?
- Actions?
- Goal test?
- Path cost?

[Note: optimal solution of n-Puzzle family is NP-hard]
Example: robotic assembly

- States? real-valued coordinates of robot joint angles and parts of the object to be assembled
- Actions? continuous motions of robot joints
- Goal test? complete assembly
- Path cost? time to execute

Example: 8-queens problem

- States?
- Actions?
- Goal test?
- Path cost?

Incremental formulation vs. complete-state formulation

- States?
- Actions?
- Goal test?
- Path cost?
Example: 8-queens problem

Incremental formulation (alternative)
- **States?** \(n (0 \leq n \leq 8) \) queens on the board, one per column in the \(n \) leftmost columns with no queen attacking another.
- **Actions?** Add queen in leftmost empty column such that is not attacking other queens

Basic search algorithms

How do we find the solutions of previous problems?
- Search the state space (remember complexity of space depends on state representation)
- Here: search through explicit tree generation
 - ROOT= initial state.
 - Nodes and leaves generated through successor function.
- In general search generates a graph (same state through multiple paths)

Simple tree search example

function TREE-SEARCH\((\text{problem, strategy}) \) return a solution or failure

Initialize search tree to the initial state of the problem

do
 if no candidates for expansion then return failure
 choose leaf node for expansion according to strategy
 if node contains goal state then return solution
 else expand the node and add resulting nodes to the search tree
endo
Simple tree search example

function TREE-SEARCH(problem, strategy) return a solution or failure
 Initialize search tree to the initial state of the problem
 do
 if no candidates for expansion then return failure
 choose leaf node for expansion according to strategy
 if node contains goal state then return solution
 else expand the node and add resulting nodes to the search tree
 enddo

State space vs. search tree

A state is a (representation of) a physical configuration
A node is a data structure belong to a search tree
 - A node has a parent, children, ... and includes path cost, depth, ...
 - Here node= <state, parent-node, action, path-cost, depth>
 - FRINGE = contains generated nodes which are not yet expanded
 - White nodes with black outline

Tree search algorithm

function TREE-SEARCH(problem, fringe) return a solution or failure
 fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
 loop do
 if EMPTY?(fringe) then return failure
 node ← REMOVE-FIRST(fringe)
 if GOAL-TEST[problem] applied to STATE[node] succeeds then return SOLUTION(node)
 fringe ← INSERT-ALL(EXPAND(node, problem), fringe)
 enddo

Tree search algorithm (2)

function EXPAND(node, problem) return a set of nodes
 successors ← the empty set
 for each <action, result> in SUCCESSOR-FN[problem](STATE[node]) do
 s ← a new NODE
 STATE[s] ← result
 PARENT-NODE[s] ← node
 ACTION[s] ← action
 PATH-COST[s] ← PATH-COST[node] + STEP-COST(node, action, s)
 DEPTH[s] ← DEPTH[node]+1
 add s to successors
 endfor
 return successors
Search strategies

- A search strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions:
 - completeness: does it always find a solution if one exists?
 - time complexity: number of nodes generated
 - space complexity: maximum number of nodes in memory
 - optimality: does it always find a least-cost solution?
- Time and space complexity are measured in terms of:
 - b: maximum branching factor of the search tree
 - d: depth of the least-cost solution
 - m: maximum depth of the state space (may be ∞)

Uninformed search strategies

Uninformed search strategies use only the information available in the problem definition
When strategies can determine whether one non-goal state is better than another → informed search
- Breadth-first search
- Uniform-cost search
- Depth-first search
- Depth-limited search
- Iterative deepening search
- Bidirectional search

Breadth-first search

- Expand shallowest unexpanded node
- Implementation:
 - fringe is a FIFO queue, i.e., new successors go at end
Breadth-first search

- Expand shallowest unexpanded node
- **Implementation:**
 - fringe is a FIFO queue, i.e., new successors go at end

Properties of breadth-first search

- **Complete?** Yes (if \(b \) is finite)
- **Time?** \(1 + b + b^2 + b^3 + \ldots + b^d + b(b^d-1) = O(b^{d+1}) \)
- **Space?** \(O(b^{d+1}) \) (keeps every node in memory)
- **Optimal?** Yes (if cost = 1 per step)
- **Space** is the bigger problem (more than time)

BF-search; evaluation

- Two lessons:
 - Memory requirements are a bigger problem than its execution time
 - Uniformed search only applicable for small instances
 - Exploit knowledge about the problem

<table>
<thead>
<tr>
<th>DEPTH</th>
<th>NODES</th>
<th>TIME</th>
<th>MEMORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1100</td>
<td>0.11 seconds</td>
<td>1 megabyte</td>
</tr>
<tr>
<td>4</td>
<td>111100</td>
<td>11 seconds</td>
<td>106 megabytes</td>
</tr>
<tr>
<td>6</td>
<td>(10^6)</td>
<td>19 minutes</td>
<td>10 gigabytes</td>
</tr>
<tr>
<td>8</td>
<td>(10^8)</td>
<td>31 hours</td>
<td>1 terabyte</td>
</tr>
<tr>
<td>10</td>
<td>(10^{10})</td>
<td>129 days</td>
<td>10 terabytes</td>
</tr>
<tr>
<td>12</td>
<td>(10^{12})</td>
<td>35 years</td>
<td>10 petabytes</td>
</tr>
<tr>
<td>14</td>
<td>(10^{14})</td>
<td>3523 years</td>
<td>1 exabyte</td>
</tr>
</tbody>
</table>
Uniform-cost search

- Expand least-cost unexpanded node
- **Implementation:**
 - \(\text{fringe} = \text{queue ordered by path cost} \)
- Equivalent to breadth-first if step costs all equal
- **Complete?** Yes, if step cost \(\geq \epsilon \)
- **Time?** \# of nodes with \(g \leq \) cost of optimal solution, \(O(b^{1+\text{floor}(C*/\epsilon)}) \)
 where \(C^* \) is the cost of the optimal solution
- **Space?** \# of nodes with \(g \leq \) cost of optimal solution, \(O(b^{1+\text{floor}(C*/\epsilon)}) \)
- **Optimal?** Yes – nodes expanded in increasing order of path costs

Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - \(\text{fringe} = \text{LIFO queue, i.e., put successors at front} \)
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - \textit{fringe} = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - fringe = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - `fringe` = LIFO queue, i.e., put successors at front

Properties of depth-first search

- **Complete?** No: fails in infinite-depth spaces, spaces with loops
 - Modify to avoid repeated states along path
 → complete in finite spaces
- **Time?** $O(b^m)$: terrible if m is much larger than d
 (remember: m ... maximum depth of search space)
 - but if solutions are dense, may be much faster than breadth-first
- **Space?** $O(bm)$, i.e., linear space!
- **Optimal?** No

Depth-limited search

Is DF-search with depth limit l.
- i.e. nodes at depth l have no successors
- Problem knowledge can be used
Solves the infinite-path problem, but
If $l < d$ then incompleteness results
If $l > d$ then not optimal

Time complexity: $O(b^l)$
Space complexity: $O(bl)$

Depth-limited algorithm

function DEPTH-LIMITED-SEARCH(problem, limit) return a solution or failure/cutoff
 return RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE-DLS(node, problem, limit) return a solution or failure/cutoff
 cutoff_occurred? ← false
 if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
 else if DEPTH[node] == limit then return cutoff
 else for each successor in EXPAND(node, problem) do
 result ← RECURSIVE-DLS(successor, problem, limit)
 if result == cutoff then cutoff_occurred? ← true
 else if result ≠ failure then return result
 if cutoff_occurred? then return cutoff else return failure
Iterative deepening search

What?
- A general strategy to find best depth limit l
 - Solution is found at depth d, the depth of the shallowest solution-node
 - Often used in combination with DF-search

Combines benefits of DF- and BF-search

Iterative deepening search function

$$\text{ITERATIVE_DEEPENING_SEARCH}(\text{problem})$$

return a solution or failure

inputs: problem

for $depth \leftarrow 0$ to ∞
 result \leftarrow DEPTH-LIMITED_SEARCH(\text{problem}, \text{depth})
 if result \neq cutoff then return result

Iterative deepening search $l = 0$

Limit $= 0$

Iterative deepening search $l = 1$

Limit $= 1$
Iterative deepening search

- Number of nodes generated in a depth-limited search to depth \(d\) with branching factor \(b\):
 \[N_{DLS} = b^0 + b^1 + b^2 + \ldots + b^{d-2} + b^{d-1} + b^d \]

- Number of nodes generated in an iterative deepening search to depth \(d\) with branching factor \(b\):
 \[N_{IDS} = (d+1)b^0 + d b^1 + (d-1)b^2 + \ldots + 3b^{d-2} + 2b^{d-1} + 1b^d \]

- For \(b = 10\), \(d = 5\),
 - \(N_{DLS} = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111\)
 - \(N_{IDS} = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456\)

- Overhead = \((123,456 - 111,111)/111,111 = 11\%\)

Properties of iterative deepening search

- **Complete?** Yes
- **Time?** \((d+1)b^0 + d b^1 + (d-1)b^2 + \ldots + b^d = O(b^d)\)
- **Space?** \(O(bd)\)
- **Optimal?** Yes, if step cost = 1

Num. comparison for \(b=10\) and \(d=5\) solution at far right
\[N_{IDS} = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 + 999,990 = 1,111,101 \]
\[N_{BFS} = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111,101 \]

- IDS does better because nodes at depth \(d\) are not further expanded
- BFS can be modified to apply goal test when a node is generated
Bidirectional search

Two simultaneous searches from start an goal
- Motivation:
 \[
 b^{d/2} + b^{d/2} \neq b^d
 \]
 Check whether the node belongs to the other fringe before expansion
 Complete and optimal if both searches are BF
 Space complexity is the most significant weakness

How to search backwards?

The predecessor of each node should be efficiently computable
- When actions are easily reversible
 Number of goal states does not explode

Summary of algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-cost</th>
<th>Depth-First</th>
<th>Depth-limited</th>
<th>Iterative deepening</th>
<th>Bidirectional search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>YES(^a)</td>
<td>YES(^{a,b})</td>
<td>NO</td>
<td>YES, if (l \geq d)</td>
<td>YES(^a)</td>
<td>YES(^{a,c,d})</td>
</tr>
<tr>
<td>Time</td>
<td>(b^{d+1})</td>
<td>(b^l + \text{floor}(C/e))</td>
<td>(b^m)</td>
<td>(b^l)</td>
<td>(b^d)</td>
<td>(b^{d+2})</td>
</tr>
<tr>
<td>Space</td>
<td>(b^{d+1})</td>
<td>(b^l + \text{floor}(C/e))</td>
<td>(bm)</td>
<td>(bl)</td>
<td>(bd)</td>
<td>(b^{d+2})</td>
</tr>
<tr>
<td>Optimal?</td>
<td>YES(^c)</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>YES(^c)</td>
<td>YES(^{c,d})</td>
</tr>
</tbody>
</table>

a … if \(d\) is finite
b … if step costs \(\geq e\)
c … if step costs are equal
d … if both directions use BFS

Repeated states

- Failure to detect repeated states can turn a linear problem into an exponential one!
Graph search algorithm

“Closed”-list stores all expanded nodes

function GRAPH-SEARCH(problem, fringe) return a solution or failure
closed ← an empty set
fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
 if EMPTY?(fringe) then return failure
 node ← REMOVE-FIRST(fringe)
 if GOAL-TEST[problem] applied to STATE[node] succeeds
 then return SOLUTION(node)
 if STATE[node] is not in closed then
 add STATE[node] to closed
 fringe ← INSERT-ALL(EXPAND(node, problem), fringe)

Graph search, evaluation

Optimality:
- GRAPH-SEARCH discard newly discovered paths
 ▪ This may result in a sub-optimal solution
 ▪ YET: when uniform-cost search or BF-search with constant step cost

Time and space complexity,
- proportional to the size of the state space
 (may be much smaller than $O(b^d)$)
- DF- and ID-search with closed list no longer has linear space requirements since all nodes are stored in closed list!!

Summary

- Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored
- Variety of uninformed search strategies
- Iterative deepening search uses only linear space and not much more time than other uninformed algorithms